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Aa.tract-DiffulC bifurcation modes of plane recillinear deformations on dry sand IIlIIples are discussed.
Sand is described by a Mohr-Coulomb, single hardening. riaid-plastic model, with a non-associated Bow
rule in which Rowe's stress-dUatancy principle is incorporated. The only sipificant difuse bifurcation
mode in the biaxial test with mixed boundary conditions is antisymmetric buckling before localization. In
the strain controlled biaxial test internal buckling is possible everywhere in the hyperpolic reaime.

INTRODUCTION
In this paper a bifurcation analysis of the biaxial test on dry sand samples is presented. This
bifurcation problem is the soil mechanics counterpart of the metal plasticity problems analyzed
by Hill and Hutchinson[1], Young[2] and more recently by Needleman[3]. The analysis is
concentrated in the discussion of diffuse bifurcation modes since the shear band analysis is
presented in previous publications by the author [4, S]. For convenient reference the band
analysis is outlined here because it simplifies the discussion of the diffuse modes [1].

The constitutive model used here is the so-called rigid-granular model, which is proposed
for describing sand at low stress levels with respect to the elasticity and/or the strength of the
soil grains. The rigid-granular concept appears first in Rowe's stress-dilatancy theory[6] and is
theoretically extended by Dietrich[7] in the theory of 'psammic' material. A simplified form of
the rigid-granular model, introduced by the author, has already yielded satisfactory results in
the shear band analysis of the biaxial test[S] and in the shear band and diffuse modes analysis
of the triaxial test on dry sand samples [8, 9]. The basic assumptions of this model are the
following: (1) there is no material property with the dimension of stress, and (2) dilatancy is an
internal constraint and consistently the mean pressure increment is statically indeterminate.

The rigid-granular model can be related to a double hardening model, like the one proposed
by Lade [10] or more recently by Vermeer[ll], if volumetric strain hardening is neglected. The
present model is also very similar in structure to the one proposed by Storen and Rice[12] for
metals and the one by Rudnicki and Rice [13] for fissured rocks. The structure of these models
is duscussed by Needleman[13], who applies a non-dilatant, pressure sensitive model in the
bifurcation analysis of plane strain tension and compression. Similar work has been also
presented by the author in the bifurcation analysis of the biaxial and of the triaxial
test[4, S, 8, 9].

The bifurcation problem is formulated semi-inversely in terms of a perturbation solution. At
the moment of bifurcation nearly proportional loading in the sense of Shanley[14] is assumed, i.e.
this perturbation technique allows a linearization of the constitutive equations, which holds for
small deviations from the "straight ahead" continuation of the preceding loading history (see Refs.
S, 8 and 13).

A Mohr-Coulomb hardening rule is assumed to be valid. The hardening rule is expressed in
terms of dimensionless stress measures, and strain hardening is measured by the shearing
intensity of the total strain. Several investigators, e.g.[10, J1], have proposed a deviation from
the Mohr-CouJomb hardening rule by introducing a dependence on the mean pressure. The
hardening rule contains then a factor of the form (Plpo)/, where P is the current mean pressure
and Po is an arbitrary pressure (the exponent a is for Po =100 kN/m2 between one third and one
half). The arbitrarness of Po means that the above modifications are merely curve fittings and
not constitutive equations. An inftuenceof the stress level into the constitutive response is
actually expected in either very high stress levels or for strain paths violating the dilatancy
constraint.
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The assumption that dilatancy is an internal constraint is a working hypothesis accompanied
by the assumptions that the mean pressure increment is statically indeterminate. These material
assumptions are to be checked in boundary value problems, where the class of solutions is not
necessarily empty.

The present constitutive mOdel is incomplete with respect to the instantaneous modulus It
for shearing parallel to the principal axes of prestress. This freedom allows us to solve the
problem in terms of It and consequently to cover a broad spectrum of constitutive
assumptions [I}. For example, within a theory of plastic-flow like [l0} or [lll, It equals the
elastic shear modulus. For some deformation theories of plasticity, e.g. [9} and [12}, It equals
the secant modulus of an adequate stress-strain curve. The secant modulus estimate for It
better fits the experimental results than the higher elastic value. For a Il'anular soil p. cannot be
an elastic constant; It must depend on the governing stress level. Within the rigid-granular
model p. is proportional to the aoverning mean stress and can be actually fitted asamodified secant
modulus [S}.

In the next chapter we discuss briefly the constitutive equations for dry sand and for plane
strain conditions, utilizina the above mentioned rigid Il'anular behavior. Subsequently the field
equations, the band analysis and the classification of regimes are presented. Diffuse bifurcation
modes of a biaxial test with mixed boundary conditions are then analyzed, and the correspond
ina eigenvalue equations for the physically significant cases are formulated. The eiaenvalue
equations are then numerically solved lor special values of the material properties, which are
characteristic for medium Il'ained sand. Finally Biot's problem of internal buckJing[15} is
discussed as a possible diffuse bifurcation mode of a strain controlled biaxial test.

CONSTITUTIVE EQUATIONS
Let a homogeneous, cuboidal sand sample in an undistorted initial configuration Co be

subjected to a smooth, quasi-static, homogeneous rectilinear deformation. We call the resultant
confiauration C. The boundaries of the sample in C are parallel to the principal axes of the
Cauchy stress tensor O'IJ in C, Fig. 1(a, b). In the following analysis only the xi-Cartesian
coordinate system of the principal axes of {Tij will be used.

For specifyina further the constitutive response, the bifurcation problem is formulated
semi-inversely in terms of a perturbation solution. The bifurcation mode is then a linear
combination of a homogeneous rectilinear deformation and an inhomogeneous perturbation
solution. Let C be the configuration of the sample corresponding to the considered bifurcation
mode.and let III be the corresponding infinitesimal displacement field. It is assumed that IIi has the
followina form:

(1)

lIiO is called the trivial mode and is assumed to be a rectilinear deformation (see Fig. Ie):

(2)

U, is called the non-trivial mode and is a possible analytical description of the considered
catastrophy form. The perturbation parameter 11 in (1) is a suitably small positive number (111lj~1

and DlltII» 11 > O. From (1) the infinitesimal strain tensor Ell and tbe infinitesimal rotation tensor iII'j

can be deduced:

(3)

where (0 )'i denotes differentiation with respect to the xi-coordinate.
The plane strain condition is expressed here by the fact that the displacement vector and all

its partial derivatives in the x,-direction are vanishing:

(4)



Bifurcation analysis of the plane rectilinear deformation on dry sand samples 11.7

T
H

1

(0) (b) (e) (d) (e) (f)

I'll- 1. (a) Biaxial test with mixed boundary conditions; (b) boundary stresses in C; (c) rectilinear
deformation; (d) shear band bifurcation mode; (e) symmetric bifurcation mode (buIaina); (0 antisymmetric:

bifurcation mode (bucklin&>.

For a simple material 0'13 =0'23 =O. Let 0'3 be the principal stress normal to the plane of
deformation, and let 0'1 and 0'2 be the other principal stresses in the plane of deformation, see
Fig. 1(b). It is a well established experimental finding that for sand samples under plane strain
conditions 0'3 is the intermediate principal stress. If 0'2 denotes the absolutely maximum
principal stress, it is then

(5)

where compression is taken as negative.
In plane strain tests it is found that 0'3 is approximately proportional to the mean pressure in

the plane[l6]:

(6)

Let sand t denote the so-called Roscoe stress measures:

(7)

We assume that the perturbation solution ."ilj is so small that the Mohr-Coulomb friction law is
continuously valid. The Mohr-Coulomb yield condition can be expressed in terms of the
mobilized friction angle ~m defined by

~m =arcsin ( -.;).

sin ~IJI then obeys a strain-hardening rule:

sin ~m =T(g),

(8)

(9)

whefe T(·) is a hardening function and g is a finite Eulerian measure of the shearing intensity of
the deformation measured from the initial configuration Co. g is defined as logarithmic strain:

g=ln (:)-In(:J (10)

where 2B, 2Bo and H, Hoare the width and the height of the sample in C and Co respectively;
see Fig. l(a).
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The slope of the stress-strain curve (9) is called the dimensionless hardening rate h, given by

h =dT
dg' (11)

The most important feature of the present constitutive model is expressed by means of a
non-associated flow rule in which Rowe's stress-dilatancy principle is incorporated. The
stress-dilatancy equation for the biaxial test reads [6]

(12)

where A} is the stress ratio in the state of isocbork deformation.
According to (6) the increment of isotropic pressure is proportional to the increment as of

tbe mean pressure. in tbe plane of deformation. Due to tbe assumed dilatancy constraint, tbe
increment of isotropic pressure, and consequently As, are regarded as statically indeterminate
quantities.

The constitutive equations are formulated in terms of the increment ASij of the co-rotated
Cauchy stress tensor. ASIJ can be computed from the Cauchy stress increment AUIJ according to
the following equation [17]:

(13)

The constitutive equations for the considered infinitesimal transition C~C, derived by the
author in[5], read:

ASII =(1- sin 4>m)As - sh(E'1l - E'22)

AS22 = (I +sin 4>m)As - Sh(E22 - Ell)

AS1:1 =21-'E12

Ell + E22 =sin I'm V[(EII- (22):1+4EM;

(14)

wbere the last equation expresses the dilatancy constraint and 1'. is the mobilized dilatancy
angie of the material. For the considered perturbation solution (1), (14) can be linearized as
follows:

(15)

where

(16)

Let A:1 be the principal stress ratio in C, which is related to the mobilized friction angie 411ft according
to well-known formula:

(17)

From (12), (15) and (17) there follows finally a simple formula for 6:

(18)

FIELD EQUATIONS
The field equations for continued equilibrium for the considered infinitesimal transition

C~C are expressed in terms of tbe increment AI1J of the 1. Piola-Kirchhof stress tensor[17]:



Bifurcation analysis of the plane rectilinear deformation on dry sand samples

~IIJ.J =0.

1089

(19)

where the increment ~Ij can be expressed in terms of the constitutive stress increment ~SIJ' the
prestress D'1jt the infinitesimal strain EIj and the infinitesimal rotation tensor WI) according to the
following formula [17):

For the considered state of prestress in C (see Ref. [15)), (19) reads:

~SIl.l +~SI2J +2tw21J =0

(20)

(21)

Substitution of the constitutive equations (14) into the above field equations yields the following
field equations for the non-trivial mode 121:

Differentiation and combination of these field equation so as to eliminate ~i, which is statically
indeterminate. yield one equation for the displacement components "I and "2' Then a stream
function 'I'(x.. X2) may be introduced such that the dilatancy constraint (15) is automatically
satisfied:

(23)

The resultant equation (see Ref. [15)) for 'I' reads:

(24)

where

(25)

(26)

Equation (24) is a 4th-order partial differential equation of the mixed type. In the present
analysis only boundary value problems will be discussed for which the type of (24) is always
the same everywhere in the considered body. (bifurcation analysis of the perfect specimen).

Remark
Recently Mehrabadi and Cowin[l8] have discussed so-called "pre-failure" and "post

failure" solid plasticity models based mainly on the work of Rudnicki and Rice[13] and on the
work of Spencer[19]. Since the stress state inside the shear band cannot be completely
determined by direct measurements [20] only an elaborated post-localization analysis in the



1090 I. VARDOULAKIS

sense, e.g. of Hutchinson and Tvergaard [21] could illuminate the "post-failure" behavior of the
considered material. In such an analysis the elliptic/hyperbolic problem related to (24) is
discussed by matching solutions along characteristics of the perfect solution[21].
Vardoulakis [20] has observed that shear bands in biaxial tests behave always contractant
immediately after localization. This "inversion of dilatancy" and other directional phenomena
observed, suggest the use in post-bifurcation analyses of constitutive models with kinematic
hardening [22] or the use of incrementally non-linear models without yield surface [23]. As we
mentioned above, post-bifurcation behavior will not be considered here.

Band analysis and classification of regimes
For convenient reference we outline here briefly the shear band bifurcation analysis Fig.

l(d), of the considered problem, which appeared in Refs. [4,5]. The condition for the
localization of the deformation into ashear band can be derived from the requirement that across a
shear band boundary the internal and external stress vectors are in equilibrium. Generally the
statical compatibility conditions read (see Ref. [13]):

(27)

where [.] denotes the jump of a quantity across the shear boundary with the unit outward
vector nj. The shear band boundaries are assumed to be stationary discontinuity surfaces of the
displacement gradient. Across such a shear band boundary the following geometrical com
patibility conditions hold [13]:

where iij is proportional to the displacement vector at the shear band boundaries.

Substitution of (14), (20) and (28) into the statical compatibility conditions (27) yields:

(1- sin cf>m)[As] =shiilnl - (sh +0'1)ii2n2

- ~2 {(JL - t)ii.n2 +(JL - s)il2n.}
nl

(1 +sin cf>m)[As] = - (sh +0'2)ii.nl +shii2n2 (29)

Eliminating [As] from the above equations and using the dilatancy constraint (15) yield the
following well-known form of the localization condition:

(30)

where band c are given by (25) and (26).
The three possibilities of the solution of (30) can be classified as follows[l]:

E(elliptic): no real nl/n2

P(parabolic): 2 real nl/n2

H(hyperbolic): 4 real nl/n2'

The localization condition (30) can be written in the form

(:~r =~ - b ± v'D), (31)
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(32)

(33)

The discriminant D, given by (32), can be looked upon as a rational function of IIp.. The sign
of D depends on the sign of the discriminant

where

hit =sin ~",(sin ~'" - sin "",).

(34)

(35)

hit (R for Roscoe [5]) is always positive. This is a direct consequence of normality not holding
for granular material, expressed by the inequality

(36)

Note that the hardening rate at the peak of the stress-strain curve T(g) is denoted by he (C for
Coulomb[5]):

he=O.

For h .. hilt D(IIp.) =0 has always two positive roots, PI and Pz:

Due to Ao>0 one has

D <0 for PI < IIp. < Pz.

On the other hand the coefficient b in (30) can be written in the form

b =a(h - h,J2)~'; ~ j,

where

(37)

(38)

(39)

(40)

(41)

The corresponding characteristic regimes of (30) are sketched in Fig. 2, in a (lIp.) vs h plot.
According to the proposition of Hill and Hutchinson[ll, it is assumed that localizations

occur on the EIH -boundary between E and H.
In order to suppress localization outside E several investigators have developed purely

strain controlled tests[24,2S1, see Fig. 7. However, Rice [26] has shown that it is always
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Fig. 2. Characteristic regimes of the localization condition.

possible to construct shear band solutions compatible with all around displacement boundary
conditions. This possibility is verified experimentally for fine grained materials like fine sand,
silt or clay [24].

Note that the parabolic regime can be identified for the case tl#L > 1,[l, 27]. If #L is a
secant-type modulus, the above inequality is true for large shear strains in the order of
magnitude of 100%. For such big shear strains, sand always reaches the critical state. This
means that the consideration of the parabolic regime is only significant if plastic ftow in the
critical state is considered. The E/P-boundary and the P-regime will not be considered here.

In the following analysis two types of diffuse bifurcation problems will be discussed: (I)
buckling and bulging and bulging modes, which are significant in abiaxial test with mixed boundary
conditions, and (2) internal buckling modes which are significant in a strain controlled biaxial
test.

DIFFUSE MODES FOR MIXED BOUNDARY CONDITIONS
In this chapter we consider the physically significant bifurcation modes in the biaxial test

with mixed boundary conditions and non-tilting top platen; see Fig. l(a, e and f). Note that for
tilting top platen the dominant diffuse bifurcation mode is a bending one [4,20]. On the edge
X2 =H of the sample, a uniform displacement d is prescribed while the displacement on the
edge X2 =0 and the shear stresses on both edges are vanishing. The sides X2 =± B are
subjected to a hydrostatic confining pressure 0'\ =- O'~. As already mentioned the trivial mode
UOj is a rectilinear deformation, expressed by (2). It is assumed that "OJ satisfies the kinematic
boundary conditions (Fig. Ie):

(42)

For the non-trivial mode the following displacement field is tested:

ii\ =Il(X) cos l/t; ii2 =l}(X) sin l/t (43)
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(44)

This field automatically satisfies the homogeneous boundary conditions at the ends of the
sample:

From (23) and (43) it follows that the appropriate stream function reads

'1' =:"(x) sin ""

where

BK=m"7l

characterizes the physical slenderness of the sample.
Using (23) and (46), the following expressions can be derived:

(45)

(46)

(47)

(48)

where (-)' denotes differentiation with respect to the dimensionless height-coordinate x.
The following representation of the mean pressure increment Ai is consistent with the

displacement field (43) introduced above:

Ai =sex) cos"'.

From (22h it follows that

-1 1
i =1+sin~... BK282 {(JL +I)"'"+J(1[8~JL - I) +(l +82)sh]"'}.

(49)

(SO)

Substitution of '1' from (46) into (24) yields finally the well-known governing differential
equation for the considered bifurcation problem [1-3]:

The solution of (51) is of the form

4

"(x) =~q exp {Ka~},

where aj satisfies the characteristic equation

aj4 - bal +c =o.

(51)

(52)

(53)
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When a is replaced by ia, where i =V( - I), the above characteristic equation transforms into
an equation similar to (30). The character of the roots of (53) depends on whether the state
variables lie in the elliptic or in the hyperbolic regime of (30).

Boundary conditions
For the considered infinitesimal transition C-+ C', the confining pressure Uc is assumed to

remain constant. The boundary conditions for the unconfined sides of the sample <x = ± 1)
express the fact that a traction of constant intensity always acts normally on these boundaries.
Mathematically this condition reads

(54)

where {n/V = { ± 1,0, O} is the outwards boundary normal. Substitution from (20) and (14) into
(54) yields for

(55)

Using (14) and (48)-(50) the boundary conditions may be expressed in terms of u; i.e. for
x= ± 1,

(56)

where

(57)

Symmetric bifurcation modes are characterized by the condition: u(x) = - u( - X), Fig. l(e). In
this case is the solution (52), C3 =C4 = 0; i.e.

(58)

The bifurcation condition can be derived from the homogeneous boundary conditions (56), if
we ask for non-trivial solutions for C1 and C2• For X = I (56) and (58) yield

{·u, K2P"){'u K2"2'} {'u, K2P"}{'u K2"2'}u(\)+ UO l u(2)+ (] U(2) = U(2)+ u(2J u(\)+ (] U(\). (59)

Antisymmetric bifurcation modes are characterized by the condition: u(x) =u( - x), Fig. 1(f).
The bifurcation condition for X = 1 is expressed by (59) by replacing the subscripts (1) and (2)
by (3) and (4), respectively.

EIGENVALUE EQUATIONSIN THE E·REGIME
The assumption that the incipient shear modulus p. is a secant-type modulus means that p.

decreases monotonously during the deformation Co-+ C and that it remains always positive. On
the other hand the stress difference t is also positive and increases primarily until reaching a
maximum value beyond the peak of the considered stress-strain curve reg). [It can be shown
that the maximum load condition in the biaxial test with constant confining pressure and for a
hypothetical homogeneous rectilinear deformation is attained in the softening regime for
h = - (1/2)(1 +sin 11.. )(1- sin 4>.. ) sin 4>...] This means that tIp. must be a positive, monotonously
increasing and convex function of h in the hardening regime. The actual state path Co-+ C in
the state space (tIp., h) must for consistency lie in the elliptic regime before failure, see Fig. 2.
At some critical state C* that state path will intersect the E/H-boundary. At the moment of
intersection localization is possible and it is also assumed that it actually occurs. Note that the



Bifurcation analysis of the plane rectilinear deformation on dry sand samples 1000S

theoretical predictions for the shear band inclination, based on the above model, were in good
agreement with the experimental data [5]. The search of diffuse modes of the form (43) is
therfore physically meaningful in E and on the E/H-boundary. In H, diffuse modes are only
significant in strain-controlled tests, where it is always possible that diffuse and localized modes
develop simultaneously. Such diffuse modes in H will be discussed separately in a later
chapter.

The elliptic regime E, shown in Fig. 2, is divided into two subregimes: the elliptic complex
subregime EC and the elliptic imaginary subregime E1[3]. In EC the roots of (30) are complex
conjugate pairs, while in El they are purely imaginary.

The EC-subregime
This subregime is given by the inequalities

(60)

The solutions of (51) are e:l:z and e:l:', where

z=Kax; a=M+iN; i=V(-I),

(61)

The symmetric solutions are given by

U(I) = Re{sin hz} =sin h(KMx) cos(KNX)

"(2) =/m{sin hz} = cos h(KMX) sin(KNx),

and the antisymmetric solutions are given by

U(3) =Re{cos hz} =cos h(KMX) cos(KNX)

U(04) =Im{cos hz} =sin h(KMX) sin(KNx).

(62)

(63)

Introducing (62) or (63) into the bifurcation condition (59), one asserts the following eigenvalue
equation, see Refs. [1-3]:

sin h(2KM) =+ M A8 +t{(82+1Jh/2)
sin (2KN) - N A8 - f( 82+1Jh/2)'

(64)

where, as throughout this chapter when two signs appear, the (+) sign applies for the
symmetric modes and the (- ) sign applies for the antisymmetric modes.

The E/-subregime
This subregime is given by the inequalities

(65)

In this case the solutions of (51) read:

U(I) =sin h(Kax); U(2) =sin h(K~x)
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(67)

The eigenvalue equation reads:

(68)

The E/H- and the ECIEI-boundary
The boundaries are characterized by the condition D=O. On tbe E/H-boundary the

eigenvalue equation takes the form,

where c, and P, are the values of c and P, respectively, for tip, =PI; see (26) and (57). On the
ECIEI-boundary the eigenvalue equation reads:

sin h(2K"v'(c2»
2K4\1(C2)

(70)

where C2 and P2 are the values of c and P, resepctively, for tIll =P2' For tip, =PI. (69) yields
the lowest critical slenderness corresponding to some given hardening rate h:

Kcr = min(K).
E

(71)

For h =hR the two bifurcation roots expressed by (38) coincide. and their common value,
denoted by PR, reads:

For PI = PRo v'C=82 and (69) yield the maximum of the lowest critical slenderness:

1f
max Kcr =w'

(72)

(73)

Equation (73) reftects the fact that dense, dilatant samples are less sensitive to diffuse
bifurcation than loose, less dilatant or contractant samples. As it will be demonstrated in the
next chapter, (73) represents a fairly conservative lower bound for the critical slenderness: see
Fig. 5.

Short wave length limit
The bifurcation mode corresponding to the short wave length limit [3J can be computed

from (64) and (68) by setting K -+00 (m -+00; see (47» which yields the following eigenvalue
equation

A8
v'e= 82+ah/2'

(74)
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For h =hR (74) yields tIp. =PR and for h -. co the short wave length limit approaches the
E/P-boundary from the interior of E; see Fig. 2. For overcritically dense sand specimens the
shear band obliquities measured are always higher than the corresponding ones for tIp.> PR [5].
Accordingly for overcritically dense sand specimens the shear band bifurcation is not initiated
by small imperfections in tbe geometry of the specimen but probably by imperfections in the
porosity distribution which cause local variations of the soil stiffness. In contrary for under
critically"dense specimens (tIp. -.1) a sensitivity in surface imperfections is to be expected.

COMPUTATIONAL RESULTS
The eigenvalue equations (64), (68), (69) and (70) are evaluated for some sets of material

properties which are characteristic for over-critically dense, medium 8I'ained sand. This special
choice of material properties is made in order to compare the computational results with the
experimental IDdings[4,5,27]. The computations showed that the analysis can be restricted in
the vicinity of the peak of the assumed stress-strain curves. This is because the computational
critical slenderness at states with high hardening rates are extremely low. In the vicinity of the
peak the mobilized friction angle til". and the mobilized dilatancy angle ".. are approximately
equal to their peak values tIIp and lip, respectively. According to Rowe[6] the stress ratio A./ in
(12) is set equal to the one in the critical state:

(75)

(76)

is the critical friction angle of the considered sand [4, 5, 27]. Table I summarizes the material
properties for two characteristic porosities of the considered sand IS].

The range of variation of the hardening rate h is linked to the experimental finding in the
biaxial tests with the considered sand that localization appeared for critical hardening rates h*,
estimated by the following equation[27}:

(77)

Figures 3 and 4 show the computational results for antisymmetric bifurcation in E for dense
and medium dense sand samples. The corresponding eigenvalue equations are solved iter·
ratively in terms of the engineering slenderness· 2BIH by scanning the elliptic regime in the
range hR < h < 2, PI:S tIp. < I. The results are plotted in (tip. vs h)-diagrams, where contours of
constant slenderness are depicted. By comparing Fig. 3and Fig. 4, it follows that medium dense
samples are more sensitive to diffuse buckling than dense ones. For h* estimated from (77),
only very slender samples will show diffuse buckling. This result is supported from the
experimental evidence that for dense and medium dense samples no buckling was observed
[4,5,27). Por the medium dense samples with 2BIH-=: 0.32 at peak and h* =: 1.14 from (71), the
minimum critical slenderness according to (69) is 0.33. This means that diffuse buckling can
only develop in the vicinity of the EIH-boundary. By passing the EIH-boundary, shear bands
are formed. Consequently the development of the diffuse mode is interrupted at its beginning.

The lowest critical slenderness, (2BIH)m for antisymmetric bifurcation is computed in the
range hR:s h <2 and for the two sets of material properties listed in Table 1. The results are

Table 1. Material properties for some characteristic initial porosities 110 of a medium pained sand; see Ref. (SI and
eqns (18), (7$) and (76)

Classification (no)

dense sand (361)

-.diu. denst sand (431)

47.

38.

16.9

4.9
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Fia. 4. Diffuse anli$ymmetric bifurcation modes in the elliptic relime: medium dense sand.

shown in Fig. S in a (2BIH)cr vs h plot. According to this figure. (2B/H)cr increases with
increasing porosity and depends sensitively on the hardening. rate h. This sentivity is much
more pronounced as h approaches i~s limiting value hR' As shown in Fig. 2. the critical
hardening rate h* is determined by the intersection of the actual state path and the E/B
boundary. Consequently the results shown in Fig. S actually reflect the sensitivity of the
bifurcation solution on the actual value of the incipient shear modulus p...

A typical result concerning the symmetric bifurcation modes is shown in Fig. 6. It follows
from this figure that bulging is not significant in the biaxial test.

INTERN AL BUCKLING IN ASTRAIN CONTROLLED TEST
In a strain controlled test like the one sketched in Fig. 7. the bifurcation modes shown in

Fig. l(dHf) are kinematically impossible. For that reason this test has been proposed for
performing homogeneous deformations throughout[24.25]. As we mentioned above shear
bands cannot be suppressed in general by pure kinematic control[26]. In the following we shall
consider the possibility of also diffuse modes in the strain controlled test. In a test like this. for
reaching the limiting condition and passing into the softening regime of the hardening rule. the
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Fig. 6. Dift'use symmetric bifurcation modes in the EC·subregime; dense sand.

Fig. 7. The strain controlled biaxial test.

strain rates must always satisfy the momentaneous dilatancy constraint; see Goldscheider[28].
Under these circumstances Biot's problem of internal buckling[l, 15] is meaningful and can be
formulated within the framework of the above illustrated perturbation analysis. For

1J1 =C cos <Xn) cos (l/I",), C =UoI(~), (78)
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where

t. VARDOULAKIS

(79)

the non-trivial displacement field reads:

with

n L2r----mL.·

(80)

(81)

For odd numbers n and m this displacement field satisfies the following homogeneous boundary
conditions.

for

for

introducing '1ft from (78) into (24) yields

"'+br+c =0,

(82)

(83)

The characteristic equation (83) is similar to the characteristic equation (30) for the shear band
analysis. Consequently (83) possesses one pair of symmetric solution for r on the BlH
boundary and two pairs of symmetric solutions in H. It should be noted that the characteristic
directions (31) are zero extension directions for the displacement field (80). Consequently it is
possible that internal shear bands and internal buckling develop simultaneously.

CONCLUDING REMARKS
The present analysis has yielded the theoretical background to the working hypothesis that

the biaxial test with mixed boundary conditions and non-tilting top platen performs homo
geneous deformations until failure. The analysis shows that this hypothesis is true for
overcritically dense specimens if these specimens are not extremely slender. Since the state of
failure is that of the localization of the deformation into a shear band, a homogeneous
rectilinear deformation can be performed in a biaxial test with mixed boundary conditions up to
states very close to the peak.

On the other hand the strain-controlJed biaxial test could allow for homogeneous, rectilinear
deformations also in the hyperbolic repme if the specimen were perfectly homogeneous and if
internal shear bands and Biot's internal buckliq do not develop. The analysis indicates, however
that both bifurcation modes are to be expected. Whether internal shear bands and/or internal
buckling actuaUy develop or not, cannot be answered definitely on the basis of the present
bifurcation analysis. The behavior in the hyperbolic repme of a sand specimen in a strain
controlled test will be easier to analyse if precise measurements of the strain field are known.
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